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The concept of feedbock-Ioop dominance is central to the system dynamics
paradigm. In complex systems—high-order, multiloop nonlinear feedback sys-
tems—behavior over time depends on which of the many feedback processes
in the system dominates. At any moment in the evolution of the system, some
feedback loops will be highly influential and others will be inactive. Because
of nonlinearities, loop dominance often shifts as the behavior unfolds. As the
system enters new regions of state space, latent loops that have had no role in
the behavior may suddenly become active, causing qualitative changes in the
mode of behavior. Endogenous shifts in loop dominance are responsible for
shifts from, for example, exponential growth to decline or from stability to
instability—they are responsible for bifurcations. These nonlinear interactions
lie ot the heart of many important behaviors observed in models. Understanding
the nature of loop dominance and the factors that cause it to shift endogenously
is critical to the design of robust policies in nonlinear systems. Experienced
system dynamics modelers have long used a variety of heuristics to guide the
search for dominant structure in large simulation models. Rigorous and un-
ambiguous definitions, however, have been lacking. In this article, George
Richardson provides a rigorous account of loop polarity and loop dominance,
illustrating with a range of examples both simple and subtle. The article
should prove useful for graduate and advanced undergraduate courses in
system dynamics and modeling.

John D. Sterman

Underlying the formal, quantitative methods of system dynamics is the goal of
understanding how the feedback structure of a system contributes to its dy-
namic behavior. Understanding is captured and communicated in terms of
stocks and flows, the polarities of feedback loops interconnecting them, and
shifts in the significance or dominance of various loops. However, there is a
conspicuous gap in our literature between intuitive statements about shifts in
loop dominance and precise statements about how we define and detect such
important nonlinear phenomena.

Tbis investigation is an attempt to hridge that gap. In the effort to construct
formal definitions of shifts in loop dominance, it became clear that our com-
mon definitions of loop polarities were not sufficiently precise. There is an
underlying unease in our own field and in the cybernetics literature that we
do not really know what a positive loop is. Asbby, for example, was bothered
by the convergent hehavior of the discrete positive loop
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He used its apparently contradictory goal-seeking hehavior to support his
claim of the inadequacy of feedhack as a tool for understanding complex
dynamic systems (Ashhy 1956, 81). To avoid such anomalies, some define a
loop to he positive if it gives divergent hehavior. Graham (1977) finds prohlems
with that characterization and suggests instead that a loop he called positive
if its open-loop steady-state gain is greater than 1. Richmond (1980) delightfully
exposed our confusions by descrihing a well-meaning professor trying to
explain to a student: "Positive loops are . . . er, well, they give rise to expo-
nential growth . . . or collapse . . . hut only under certain conditions. . . . Under
other conditions they hehave like negative feedback loops.. . ." He concluded
that the nicest way out of the confusion is to define a positive loop to be a goal-
seeking loop whose goal continually "runs off in the direction of the search."
Some, of course, ignore all the suhtleties and obtain loop polarities simply hy
counting negative links (Richardson and Pugh 1981).

We begin then with a tighter, more formal definition of the polarity of a
feedhack loop. Our focus, however, is on the concept of loop dominance and
the phenomenon of shifts in loop dominance in multiloop nonlinear systems.

Rigorous definition of loop polarity

We shall base our definition of loop polarity on the assumption that every
dynamically significant feedhack loop in a system contains at least one level
(accumulation or integration).^ The development is in terms of continuous
systems. A similar development holds for feedback processes couched in
discrete terms, provided the principle of an accumulation in every loop is
maintained.

Consider a single feedhack loop involving a single level x and an inflow
rate k = dx/dt.^ Define the polarity of the feedback loop linking the inflow
rate k and the level x to he

sign
dk
dx = sign

dx/dt
dx

This formal definition is consistent with our more intuitive characterizations:
dx can he thought of as a small change in x, which is traced around the loop
until it results in a small change dk in the inflow rate k - dxfdt. If the change
in the rate, dk, is in the same direction as the change in the level, dx, then they
have the same sign. Since k here is an inflow rate and thus is added to the
level, the loop reinforces the initial change and is therefore a positive loop. In
such a case, s\^n{dk/dx) is also positive, so the formal definition is consistent
with the intuitive one. If the resulting change in the inflow rate is in the
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opposite direction to the change dx, then sign{dk/dx) is negative and the
polarity of the loop is negative by hoth the intuitive and formal definitions.
The formal definition is equivalent to defining the polarity of a first-order
feedhack loop to he the sign of the slope of its rate-versus-level curve.^

To extend the definition to feedhack loops in which x is an outflow rate, we
merely have to agree to attach a negative sign to the expression for k if it
represents an outflow. Then the preceding definition holds for all loops involving
a single level x and a single inflow, outflow, or net rate k. The first few examples
that follow are very familiar: they are intended to establish some confidence
in this formal definition of loop polarity hefore we use it to derive some less
familiar results.

EXAMPLE 1: EXPONENTIAL GROWTH OR DECAY. Let X = bx, w h e r e b IS a cons tan t . T h e n

(dk
Polarity of feedhack loop = sign

\dx
= s\gn{b)

which is positive if b is positive, and negative if b is negative.
The result makes intuitive sense, as may he seen hy interpreting .x as a net

rate such as net population growth. If hirths exceed deaths, the coefficient b is
positive and the loop produces exponential population growth. Similarly, if
deaths exceed hirths, b is negative and the loop exhibits exponential decay
hehavior. The usual case is 6 > 0, and that prompts us to call all such first-
order net-rate formulations positive loops. However, the polarity of such a loop
in fact depends on a parameter whose sign is set hy environmental conditions
outside the loop. Without knowledge of the sign of b, the polarity of the loop
represented hy x = bx is undetermined.^

EXAMPLE 2: EXPONENTIAL ADJUSTMENT TO A GOAL. Let X = (x* - x) / T, w h e r e X* and

T are constants. Then

Loop polarity - sign —-
lax sign

d[{x*-x)/T]
dx = sign

- 1

T

which is negative if the time constant Tis positive, and positive if Tis negative.
In applications of this structure, as in exponential smoothing, the time

constant T is always positive, so the loop is always negative. When x* = 0,
this formulation reduces to Example 1 with b = — l / T < 0 : again, a negative
loop hy hoth formal and intuitive definitions.

In each of these cases, the formal definition of loop polarity behaves appro-
priately but yields no new insights. Cases involving more than one loop
provide a more interesting testing ground.
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Multiloop structures: loop dominance

The formal definition of loop polarity leads to a precise concept of loop domi-
nance in simple systems. Consider a first-order system containing several
feedhack loops and the level variahle x.

Let k represent the net increase in x. Define the dominant polarity of the first-
order system to he

[dk

This simple extension of the formal definition of loop polarity to multiloop
first-order systems leads to new understanding of some familiar structures and
a precise statement of what is meant hy a shift in loop dominance. The follow-
ing examples illustrate results for both linear and nonlinear systems.

EXAMPLE 3: LOGISTIC GROWTH. Let .X = ax — bx^, a > 6 > 0, XQ > 0. This familiar
structure can he thought of as a pair of feedback loops, one positive and one
negative. One could rewrite the equation, for example, as

k = [a - bx) X

considering the factor [a - bx) as a multiplier representing an endogenously
changing fractional growth rate of x. If we take each factor as a separate first-
order system, we have

Jti = X and Xz = a - bx

The definition of loop polarity produces the expected results:

Polarity of loop 1 = sign

Polarity of loop 2 ^ sign

dx

dx

= sign(l) = positive

= sign(—b) = negative

Since dkldx = a - 2bx, the dominant polarity of this nonlinear system varies
with the level x:

1+ ifx<a/2b
Dominant polarity = sign(a - 2fax) = \

[- ifx>a/2b

Thus the dominant polarity in this two-loop system shifts from positive to
negative as the level variahle x grows. The shift in dominant polarity suggests
the following formal definition:
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In a first-order system with level x and net rate of change x, a shift in loop
dominance is said to occur if and when dxl dx changes sign, that is, when the
dominant polarity ofthe system changes.

In the logistic equation, a shift in loop dominance occurs when the level
reaches half its maximum value, the point of inflection in the logistic curve.
The shift in loop dominance is a consequence of the nonlinearity of x: in any
first-order system containing any number of loops, if x is a linear function of
X. dxldx is constant and cannot change sign. We conclude that first-order linear
systems cannot show shifts in loop dominance.^

It should be noted that this definition does not capture all possible shifts in
loop dominance—only those that involve a change in dominant polarity.
Presumably, it is entirely possible for a system to show a shift in dominance
between two negative loops or two positive loops. Such a shift in dominance
between loops ofthe same polarity would not show up as a change in dominant
polarity and would have to be defined and detected by other means.^

EXAMPLE 4: GENERAL NONLINEAR SIGMOID GROWTH STRUCTURE. L e t X = x / ( x ) , / ( x ) >

0, Xo > 0. An example is the business construction formulation in several
simple urban models (Alfeld and Graham 1976) in which

R BC.KL = BCN*BS.K*BLM.K

where

BC = business construction (structures/year)
BCN = business construction normal (fraction/year)
BS = business structures (number)
BLM = business land multiplier (dimensionless), a function of BS

Then

Dominant polarity = sign —-(x/(x) = sign(x/'(x) + /(x)) =
lax /

This result has a simple geometric interpretation. The function f'[x) represents
the slope of the tangent to the graph of y = /(x) at the point (x,/(x)). On the
same graph the term f(x)lx represents tbe slope of the line from the origin to
the point {x,f{x]). Taken together, these considerations show

A nonlinear first-order feedback system of the form x = x/(x) shifts loop domi-
nance at the point on the graph of y = /(x) where the slope of the tangent is the
negative of the slope of the line from the origin.

If such a point exists (that is, if loop dominance does indeed shift in the
system), these two lines would form the diagonals of a rectangle with sides
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Fig. 1. Locating on
the graph of y = f{x]
the point XQ of shift-
ing loop dominance
in the first-order sig-
moid growth system
i = xf[x).

0}
CD

c
sz

Level (x)

parallel to the x- and y-axes. Consequently, in a simple two-loop system the
point of shifting loop dominance is relatively easy to pick out visually from a
table function for/(x). Figure 1 shows the determination of the point of shifting
loop dominance for the business construction example.

The criterion just derived applies neatly to the logistic equation as a special
case. For k = ax — bx^ = (a - bx)x, the function f[x) is a — bx, which is a
straight line from (0, a) to {afb, 0). Therefore, the curve y = f{x) itself becomes
one of the diagonals of the rectangle that determine the point of shifting loop
dominance, and the other diagonal is the line that runs from (0, 0) to {a/b, a).
Because the diagonals of a rectangle bisect each other, the point of shifting loop
dominance is again found to he x = a/26.

An analogous result, with an even simpler geometric interpretation, holds
for nonlinear systems of the form x = [x* - x]/f[x],f[x] > 0, so-called nonlinear
delays. In such systems, x* represents some goal state for the level variable x,
andy^x) represents a variable adjustment time dependent on the level. Examples
of such formulations include pollution absorption in World Dynamics (Forrester
1973) and food regeneration in the KAIBAB model [Goodman 1974; Roberts et
al. 1983). (In the former, x* would be zero, because the absorption rate is
simply the outflow from the pollution level.) In these cases, a computation^
analogous to Example 4 shows that loop dominance shifts when

fix] =
fix)

X — X

The geometric interpretation follows by noting that j^x)/(x — x*) can be viewed
as the slope of the line joining (x,/[x)) and (x*, 0). Loop dominance in such a
system shifts when the slope of the tangent to the graph of y = f(x] is equal to
the slope of the line from the point of tangency to the point (x*, 0).
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Fig. 2. Table func-
tion for pollution
absorption time
showing the line
indicating the inter-
val over which loop
dominance shifts
from negative to
positive as the pol-
lution level grows.

20-1

As an example. Figure 2 shows the table function for pollution absorption
time from Forrester (1973). The tangent line shown in the figure appeared in
the original without explanation. Now we know its significance: since x* = 0
here, the line from (0,0) tangent to the graph determines the location of the
shift in loop dominance of this system. Because Forrester's table function
formulation happens to lie along this line for 10 < POLR < 20, the shift in
loop dominance occurs not at a point hut over an interval. For POLR < 10, the
negative loop dominates and the system is capable of absorbing increases in
pollution; for POLR > 20, the positive loop dominates and the system has the
capability of exhibiting runaway pollution increases for constant or even
declining rates of pollution generation. In the interval [10, 20] neither loop
dominates: when the pollution ratio falls in this range, the system is essentially
open-loop.

EXAMPLE 5: POSITIVE LOOPS WITH GAIN LESS THAN 1. A claSSic example of this StrUC-

ture is the consumption multiplier {Samuelson 1939; Low 1980), shown in
Figure 3. In the formulation of the loop used here, average income x is repre-
sented as an exponential smooth of GNP(y), so

X ^
Y- X

T

where T is a positive smoothing time constant.
Since Y^G+C=G + cx,

X =
[C + ex)- X
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Fig. 3. The con-
sumption multiplier:
for 0 < c < 1, a first-
order system with
negative dominant
polarity.

o Propensity to
consume (c)

Rate of change of
average income

Averaging
time (T)

GNP
(Y)

Consumption
(C)

Government
expenditures

(G)

SO

dx

dx
c- \

T

Therefore

(dx
Dominant polarity = sign —

\dx = sign
c- 1

T

+ if c > 1

- if c < 1

Since the propensity to consume [c] must necessarily be a fraction between
zero and 1, we conclude that dominant polarity of the multiplier loop is always
negative.

The coefficient c in this system is commonly referred to as the open-loop
steady-state gain or open-loop step gain of the positive loop connecting
GNP(y], consumption (Q, and average income (x). The multiplier structure is
thus usually characterized as a positive loop with gain less than 1. From the
point of view of loop dominance and dominant polarity, however, it is clearly
seen to be a structure consisting of two loops, one positive and one negative,
in which, for all sensible parameter values (0 < c < 1), the negative polarity
always dominates. A similar but higher-order structure figures prominently in
the market growth model in Forrester (1968a).

The goal-seeking behavior that such systems display is thus no surprise. It
is intuitively reasonable that a system with dominant negative polarity should
be goal-seeking. Furthermore, it is evident that one need not invoke an ad-
ditional concept such as gain to explain the apparent anomaly of goal-seeking
positive loops. The nonlinear notion of loop dominance, which is part of the
system dynamicist 's everyday stock-in-trade, suffices admirably in these special
linear cases.
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More complex systems

The purpose of developing rigorous definitions of loop polarity, dominant
polarity, and shift in loop dominance is to be able to say something significant
about multiloop nonlinear systems containing a number of different rates,
levels, and auxiliaries. Taking auxiliaries first as the easiest to handle, let us
make the obvious formal definition of the polarity of a link:

Let variable A directly influence variable B. Define the polarity of the link from
^ to B to be sign[dB/dA).

This definition is merely a formal statement patterned after our previous
definitions that expresses the intuitive notion of a change in A (dA) resulting
in a change in B [dB) in the same or the opposite direction. (We move to partial
derivatives because in higher-order systems a rate x can vary as a function of
levels other than x.)

Now suppose the rate k is linked to the level x through a sequence of
auxiliaries, x -^ Oi —» 02 —* • • • ^- Of, —> x —*x. Repeated application of the chain
rule for differentiation of composite functions yields

dx da^ da2 daii dOn dk

dx dx daj da-i ^Qn-i ^On

It follows that sign [dkldx), the polarity of the feedback loop formed by this
sequence of auxiliaries and k and x, is the product of the signs of the links in
the loop, as we have in the past defined it.

To get a sense of the applicability of these ideas to higher-order systems, let
us consider a familiar nonlinear system containing two system states.

EXAMPLE 6: THE LOTKA-VOLTERRA PREDATOR-PREY EQUATIONS.

k = ax — bxy

y = -cy + dxy

where x represents the prey population and y the predators.
Applying the definition of dominant polarity to each of these equations

independently, we

sign
dx

= sign(a - by] =
- iiy>a/b

• I _L ^ 1 • i^x< c/d= sign(—c + ax) =
• - if X > c/d
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In this situation, these expressions tell us the conditions under which each
population's behavior is dominated by its own positive loop or negative loop
processes, that is. births or deaths. For the prey, the positive loop dominates,
and the prey flourish as long as the predator population is small [< a/b). For
the predators, the positive loop comes to dominate only when the prey popula-
tion exceeds a certain critical size (> c/d).

While these expressions for dominant polarity about each of the levels
independently do not tell the whole story of the behavior of the system, they
do strongly suggest that the system ought to oscillate. One could reason as
follows. Say the system starts with both populations small: x < c/d, y < a/b.
Then according to the preceding calculations, the x population is dominated
by its positive (births) loop, and the y population is dominated by its negative
(deaths) loop. Thus x should grow and y should decline. If x grows to exceed
c/d, the system experiences a change in loop dominance: the y population
comes to be dominated by its positive (births) loop, so y ought to cease de-
clining and start to rise. Eventually, if y grows to exceed a/b, another shift in
loop dominance takes place: the x population comes to be dominated by its
negative (deaths) loop, so it ought to peak and begin declining. If x falls far
enough (< c/d), loop dominance for the y population again shifts to the nega-
tive and the y population must start to decline. Eventually, y ought to fall far
enough to shift the dominant loop of the x population, causing the prey to start
to rise and bringing us back to the start of this analysis to repeat the cycle.
Figure 4 shows the recurring pattern of dominant polarities in the behavior of
this predator-prey system.

It should be emphasized that these computations of loop dominance tell only
part of the story about tbe behavior of the system. The major negative loop in
the system is only implicitly being taken into account. It is the mechanism that
brings about the shifts described, and as a negative loop with more than one
accumulation it is the actual source of the oscillatory tendencies of the system,
but we did not explicitly make use of its structure of polarity. To see what we
might be missing, it is instructive to consider what an eigenvalue analysis of
a linearized version of this system would look like:

Fig. 4. Patterns of
loop dominance
about the individual
levels in the Lotka-
Volterra equations.

Population

X (prey)

y (pred)

Conditions

Dominant Polarity

+

X < cyd

y < a/b

-t-

+

X > c/d

y < a/b

+
X > c/d

y > a/b

-

X < c/d

y > a/b

+

X < c/d

y < a/b
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y =
8ix,y)

f[xo,yo)

g{xo,yo)
+

X-

In the Lotka-Volterra system, the essential matrix is

- c

Thus in such a linearization the partial derivatives dkldx and (iy/dy would
appear (as fx and gy), but so would dk/dy and dy/dx [as fy and g ,̂ respective-
ly). By investigating dkldx and dy/dy alone, we are ignoring terms off the
main diagonal in the linearized state-space matrix. It looks as if the potential
for this development of the notion of dominant polarity is limited to systems
in which the off-diagonal terms are few and far between, or are for some other
reason not particularly significant.^

In spite of that apparent limitation, we can apply these ideas to higher-order
feedback systems and learn something. To do so we first need a rigorous
definition of the polarity of a major loop. Consider a loop composed of levels
Xi, X2, . . . , Xn connec ted in order: ki ^ x-i ^ k2 —* X2 ^ • • • —* x^ —> X].

Following the pattern of the previous definitions, define the polarity of the
major loop to be

sign
6x3

dX-\

Applied to the major loop in the Lotka-Volterra system, for example, this
definition states that

f dx dy]
Loop polarity = sign = sign[[~bx)[dy]]

which is indeed negative, as it should be. since b, d, x, and y are all greater
than zero.

This definition of the polarity of a major loop is consistent with, and in fact
depends upon, the principle of feedback systems that asserts that rates and
levels alternate around a loop [Forrester 1968b). It is also consistent with our
intuitive characterizations, for it amounts to tracing around the major loop the
implications of a small change in one of the levels. Note that when integrated
with the definition of the polarity of a string of auxiliaries, this definition
asserts that the polarity of a feedback loop containing any number of rates,
levels, and auxiliaries is the product of the signs of the links in the loop.

In the development that follows, we need one other fact, a theorem about the
steady-state behavior of tbe smooth of an exponentially growing or declining
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variable. Say y[t) = yoe^', and let z{t) be an exponential smooth
z = [y ~ zj/rfor some time constant T. Then in the steady state.

- That is,

z{t) =
Tg

y{t)

That is, the smooth of y(f) is also growing (or declining) at the same exponential
rate g, but it lags behind by a factor of 1/(1 + Tg). The result holds for first-
order exponential material delays as well as for information smoothing. This
property can be used to simplify the computation of dominant polarity in some
higher-order systems, as the following extended example demonstrates.

EXAMPLE 7: CORPORATE GROWTH FROM PRODUCT DEVELOPMENT. T h e Structure s h o w n

in Figure 5 is the essence of the self-regenerating process behind the growth of
a product-driven company. The major loop (the revenue loop) is positive, and
the minor loops are all negative. To find the dominant polarity of the system,
we compute

aPD
(IR - CR) =

aPD
(CR + CPD - CR) - (CPD)

d

HPT)

PS - PD
PAT

1

PAT
dPS
aPD

Tracing the chain of variables around with the chain rule,

aPS aPS aRDB aAR aREV app
aRDB aAR aREV app aPD

Fig. 5. Corporate
product develop-
ment structure.

Product
adjustment
time, PAT

Annual revenue
per product, RPP

Annual cost per product
in development, CPP

Fraction to
R&D, RDF Time to average

revenue, TAR
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which will be much more convenient in the form

aPS _ aPS aRDB aAR aREV app aOR aCR
aPD ~ aRDB aAR aREV aPP aOR aCR aPD

(Note that the last three terms are equal to
At this point we see that we can compute each of these terms from their

defining equations except aAR/aREV and aOR/aCR. These are fractional
rates of change of an exponential smooth and a delay. As noted, their magnitudes
depend upon the exponential rate of growth of the system, which is in fact
what we are looking for in dVD/dPD. As feedback thinkers, we are accustomed
to circularities, but this is too much; we have to make an additional assumption
to proceed.

Let us ask what this expression for dominant polarity becomes if and when
the system has reached some steady state of exponential growth or decline. Let
the system be growing or declining exponentially at the fractional rate g. Then
from the equations in the system and the property of exponential smooths and
delays cited previously,

aPS 1 1 1 1
RDF — RPP OTaPD CPP 1 + TARg 1 + OTg CT

Substituting into the equation for dP'DfdPD and rearranging slightly, we find

aPD 1 [RDF RPP OT
— 1

aPD PAT I CPP CT 1 + TARg 1 -1- OTg

Under the simplifying assumption of steady-state exponential growth, this
expression is equal to the fractional growth rate g. Setting it equal to g, multi-
plying through by various denominators, and rearranging, we obtain the
following pleasing polynomial in g:

RDF RPP OT
^ = (1 + OTg) (1 + TARg) (1 + PATg)

Because of the steady-state assumption, the dominant polarity we seek is
sign(6Pb/aPD) = sign(g), where g is a solution of this polynomial. If g is small
relative to tbe time constants OT, TAR, and PAT, as presumably it always
would be, this equation may be written

RDF RPP OT
^ := 1 + (OT -̂  TAR + PAT) g +

== 1 + (OT + TAR + PAT) g

where the higher-order terms in g are dropped because they are insignificant.^^
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Thus

8PD

so

RDF RPP OT

CPPCT
1

Dominant polarity = sign

OT -I- TAR + PAT

= sign(g)

f RDF RPP OT
-1

^̂ "̂̂ 1 CPP CT

, RDF RPP OT
+ if > 1

CPPCT

RDF RPP OT ^ J

CPPCT

Thus the dominant polarity of this product development system is determined
by the quantity

RDF RPP OT

CPPCT

If it is greater than 1, the dominant polarity of the structure is positive and
corporate growth ensues; if it is less than 1, the dominant polarity is negative
and the company declines. If as the system evolves over time the product
completion time CT were to rise sufficiently to pull this ratio below 1, then
the dominance in this system would shift from the positive growth loop to the
negative loops and constrain corporate growth.

The expression that determines the dominant polarity of this system involves
some time constants as well as proportionality factors. The significance of each
of these parameters for a healthy company is clear. The greater the ratio of
revenue to development cost per product (RPP/CPP), and tbe greater the frac-
tion of revenues the company sends to R&D (RDF), the greater the development
effort the company can afford, leading to the prospect of a high continuing flow
of new products into production. The expression shows that long product
lifetimes in the marketplace (OT) also contribute to the growth potential of the
company, while long product development completion times (CT) threaten that
potential. It is worth observing that the importance of these two time constants
in the growth potential of the company is derived here without reference to
corporate reputation or feedback effects of delivery delays. In addition to these
well-known reputation effects, completion times and obsolescence times figure
directly in the potential of the positive, revenue-generating loop to dominate
in this structure.
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It is interesting to observe that in this example the time constants TAR and
PAT do not influence the dominant polarity of the system. Products in develop-
ment PD and average revenue AR are smooths (first-order exponential averages)
of products supportable PS and revenue REV, respectively. The time constants
for these smooths, PAT and TAR, appear in the expression for dPt)/aPD in a
way that affects not whether the system grows or declines hut rather how
rapidly it moves in the direction that other parameters in the system dictate.
The result can be generalized: exponential averaging of a variable affects the
rate of growth or goal-seeking adjustment in a system hut does not have any
role in determining loop dominance.^^

Stepping back from the details of this example, we have found that the
dominant polarity of the product development loop is positive if a particular
comhination of parameters affecting the loop is greater than 1, and negative if
the combination of parameters is less than 1. The particular mix of parameters

RDF RPP QT
CPPCT

is the open-loop steady-state gain, or the open-loop step gain, of the system.
We have thus concluded the following in this example:

The dominant polarity of the product development system is positive if its open-
loop step gain is greater than 1, and negative if its open-loop step gain is less
than 1.

This is Graham's suggestion for the definition of a positive loop (1977). It
should he noted that it is a statement not about a single loop but about loop
dominance in a multiloop system comprising a major positive loop and a
number of negative loops.

Bifurcations and loop dominance

A bifurcation is a sudden shift in the equilibrium conditions of a continuous
nonlinear system.^'' It is natural to ask how shifts in loop dominance relate to
bifurcations. The following analysis of a well-known example suggests that
bifurcations occur at equilibrium points that are also points of shifting loop
dominance.

EXAMPLE 8: BIFURCATION AND SHIFTS IN DOMINANT POLARITY IN A FIRST-ORDER SYSTEM.

Let X = xj{x) - bx. For specifics, interpret x as a population (such as right
whales or passenger pigeons) and f[x) as its net birth rate factor. Let h represent
the fraction of the population harvested per year. Then
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Dominant system polarity = sign = sign(/(x) + xf'(x] - b]

- xf'{x]> b

xf'[x] < b

This system bifurcates if the net birth factor f[x] rises to a peak before it
declines to zero. Figure 6 shows such a graph for y = f[x) and the correspond-
ing rate-versus-level graph for the net birth rate xf[x].

If the harvesting rate is equal to the value labeled fai in the figure, the system
seeks and maintains a stable equilibrium population x^: if x rises above x^, the
net rate xf[x) — bx is negative and x falls back to Xi; and if x falls back helow Xi,
the net rate x f(x) — bx is positive and x rises back to Xi. Note that the slope of
the net birth rate curve y = xf[x] is negative at x = x .̂ Since that slope is equal
to/fx) + x/'(x), the dominant polarity of the system in a neighborhood of x = Xi
is always negative. The system should be nicely stable and goal-seeking around
Xi.

However, if the harvesting rate is equal to the value labeled 62 in the figure,
the equilibrium population X2 is stable only if approached from above. If the

Fig, 6. Graphs asso-
ciated with the
bifurcating system x
- x/tx) - bx: [top]
graph of y = f[x],
and [bottom] graphs
of the rates xflx)
and bx versus the
level X.

Level (x)



Richardson; Loop Polarity, Loop Dominance, and the Concept of Dominant Polarity 83

harvesting rate b were to rise at all above bz, or if the population x were to fall
a bit below X2, the goal state of the system would suddenly switch to zero. Thus
X2 and b2 determine a bifurcation point of the system.

But X2 and b2 also determine a point of shifting loop dominance in the
system. At that critical point, the slope of the net birth rate curve momentarily
equals the slope of the harvesting curve. More precisely, in a neighborhood of

b2 if X > X2

b2 if X = X2

bz if X < X2

We see immediately that if 6 = b-^, the dominant polarity of the system shifts
from negative to positive as x drops through the value X2. The positive polarity
for X < X2 means a self-reinforcing decline in x: since fixz] is the maximum
value of/(x), x = xf[x] - bx < 0 for x < X2. Thus the system shows a sudden
shift in goal state because it experiences a shift in dominant polarity from goal-
seeking negative to goal-divergent positive.

It is common to assert that as b increases through the bifurcation point in
this system, the goal state of the system suddenly shifts to zero. However, that
is not quite what happens. For b slightly greater than b2, or for b = bz and x
slightly less than Xz, the system has positive dominant polarity and its net rate
X is negative. The system's goal is, for a time at least, negative infinity. As x
drops more and more precipitously, the system experiences another shift in
dominant polarity, from positive back to negative. But here the goal of the
negative polarity system is no longer x = x̂  or Xz but rather x = 0. It is at this
second shift in dominant polarity as x declines that it becomes appropriate to
say that the goal of the system shifts to zero.

To see that there are two points of shifting dominant polarity in the system
given by X = xj{x) — bx, consider Figure 7. Dominant polarity shifts when fix)
+ xf'[x) - b changes sign, which in a continuous system implies/(x) + x/'[x)
= 6. Geometrically, that means that in this system dominant polarity changes
when the slope of the tangent to the net birth rate curve is equal to the slope
of the line representing the harvesting rate. A visual check of the slopes in
Figure 7 shows that

-00 < X <Xi => slope of x/tx) < b => polarity negative

Xi < X < X3 => slope of x/tx) > b =s> polarity positive

X3 < X < w =s> slope of x/tx) < b =s> polarity negative

The points indicated by X2 and X4 in the figure are, along with x = 0, the
possible equilibrium points of the system. At x = X2 the equilibrium is un-
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Fig. 7. Illustration of
the two points of
shifting loop domi-
nance in the bifur-
caling system x =
xfi^x] — bx: Xi and
X3 are points of
changing dominant
polarity; X2 and X4
are equilibrium
points.
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stable, since it is in the interval of positive dominant polarity. Any ideviation in
either direction from x = ^2 is reinforced, moving x away from X2 at an
increasing rate. At x — 0 and x = X4 the equilibria are stable, since both occur
in intervals of dominant negative polarity in which deviations from equi-
librium are counteracted.

Thus, in Figure 6, when the system experiences a bifurcation at 6 = 62 and
X = X2, the goal state of the system actually shifts to negative infinity. Then,
as X drops more and more rapidly, the system eventually reaches the point
where the slope of the tangent to y == x f[x] again is equal to the slope of the
line y = bzX. At that point the dominant polarity shifts back to negative, and
since k is equal to a negative number times x in this range, the goal for x
becomes zero. Without its second shift in dominant polarity, this bifurcating
system would not end up at a finite goal.

Mindful of the dangers of generalizing from one example, I conjecture that
all instances of bifurcation in continuous systems result from shifts in loop
dominance. More precisely, it seems reasonable to say that all such bifurcations
occur at equilibrium points that are also points at which the dominant polarity
can shift from negative to positive. The apparent sudden shift in goal state is
a consequence of a shift in dominant polarity.

Summary and conclusions

Shifts in loop dominance lie at the heart of significant feedback system dy-
namics. The concepts and definitions made more rigorous in this article move
in the direction of clarifying what we mean hy such shifts. The necessary first
step in that direction is to develop rigorous and reliable definitions of link and
loop polarities and shifts in loop polarities. This article has suggested such a
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set of definitions. They have the desirable property that they are formal defin-
itions with clear and immediate connections to the intuitive characterizations
in common use. Furthermore, they result in several simple algebraic and
geometric tests for determining dominant polarities and shifts in dominance
in simple systems.

The concept of dominant polarity developed here suggests the possibility of
linking three areas in the study of dynamic feedback systems. First, dominant
polarity bears a clear connection to the notion of open-loop steady-state gain.
That connection takes all mystery away from goal-seeking positive loops. From
the point of view of dominant polarity, positive loops with gain less than 1 are
no more mysterious than the structure and behavior of the logistic equation.
Both are multiloop systems in which the negative polarity can dominate. In
positive loops with gain less than 1, the negative polarity always dominates.
Second, the notion of dominant polarity aims to identify dominant loops and
shifts in loop dominance in nonlinear systems. In that sense, it is in the spirit
of efforts to use eigenvalue elasticities and participation factors to identify
dominant loops [Forrester 1982). Third, there is the distinct possibility of
understanding the phenomena of bifurcation and perhaps even mathematical
chaos in terms of shifts in loop dominance.

These connections to other ideas about dynamic systems suggest there is
reason to develop these nascent notions further. Yet there is one more reason
for a serious pursuit of the ideas of dominant polarity and shifts in loop
dominance: in applied system dynamics work, the concept of shifting loop
dominance is an easily communicated, intuitive idea. Shifts in loop dominance
and their implications for policy can be described and explained in terms of
nonquantitative causal-loop diagrams. The concept of loop dominance becomes
an important bridge between complex interactions in a simulation model and
the understanding of people the modeler hopes to influence. It may help us to
move our more significant quantitative advances, such as eigenvalue analyses,
bifurcation theory, and chaotic systems, from research to applicable policy
analysis.

Notes

1. This statement is a principle of feedback system dynamics. It is also something
of a tautology, however, because it can he viewed as an implicit definition of
what is meant hy the phrase dynamically significant.

2. Define the rate of change x to be an inflow to x if x, whatever its sign, is added
to X. That is, x is an infiow if

J T
Q k dt
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whether or not x itself is positive or negative. Similarly, x is an outflow from
X if X, whatever its sign, is subtracted from x.
See Goodman (1974) or Alfeld and Graham (1976) for discussion and examples
of rate-versus-level curves.
Nonetheless, in nonquantitative causal-loop diagrams, we often know unam-
biguously the polarity of feedback loops. The signs of the parameters are
usually given by the words used to name or describe the variables.
Higher-order linear systems also cannot change loop dominance, but this
simple development of dominant polarity is not sufficient to prove that fact.
One way to justify it is to appeal to eigenvalue analysis and participation
matrices; see Forrester (1982) for developments in the use of these ideas.
One simple technique that ought to work with first-order systems containing
two loops of the same polarity is to change one of the loops arbitrarily to the
opposite polarity in the expression for k and compute the shift in dominant
polarity as before. Then interpret the result as the point of shifting loop domi-
nance between the two loops of the same polarity. Presumably, a shift in loop
dominance hetween two negative loops means a change in the goal state of the
system.
The computation is

Dominant polarity = sign[dx/dx)

+ if fix] <

[x-x*]f[x]]

fix)
X - X

X -

8. Since x = ax — bxy, and we are only interested in dx/dx, this example
illustrates the need for partial derivatives when applying these ideas in higher-
order systems.

9. The notion of dominant polarity reveals shifts in loop dominance, however,
which are not observable in analysis of linearized versions of a nonlinear
system. Efforts to blend the strengths of eigenvalue analyses and dominant
polarity concepts may bear more fruit than either approach by itself.

10. Ii y{t) = yo^'^ then the solution of the differential equation for z[t] is of the form

z[t) = ^ - ^ y{t] + ke-"''

where k is a constant dependent on initial conditions.
11. Root-locus analysis shows that the polynomial k = (1 + Tig)[l + Tzg) •••

[1 + Tng) with positive coefficients T, always has a real root g that passes from
negative to positive as k increases through 1.

12. For a further example, the reader is invited to apply the technique to the
frequently analyzed salesman loop in Forrester (1968a) and show that loop
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dominance shifts when the ratio (RS*SE)/SS moves through 1. See Rahn (1982)
for further discussion of the salesman loop and loop gain.

13. For recent system dynamics references to bifurcations, see Andersen (1982)
and From the Physical Sciences to the Social Sciences (1982). [Editor's note:
These references were recent in 1984, when the paper was written. More
current references would include Aracil and Toro (1992), Gross and Sturis
(1992), Br0ns and Sturis (1991), and Mosekilde et al. (1988).)
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